C++

BZOJ2339: [HNOI2011]卡农(dp 容斥)


题意

从$1 - n$中任意选择一些数,选$m$次构成$m$个集合

保证:

  • 集合不为空
  • 任意两个集合不相同
  • 集合内各个元素xor起来等于0

Sol

神仙题Orz

我看到两种做法,一种是洛谷题解上的直接dp,另一种是yyb的神仙转化。

其实都差不多吧。。

我简单说一下,设$f[i]$表示选了$i$个集合,满足条件的方案

直接转移会非常麻烦,因为要同时限制集合不同 xor不为0,我们又不知道集合的具体元素。

因此我们考虑容斥。

为了方便考虑,我们先不考虑每个元素的位置,最后再除以$M!$

因为xor的性质,若我们已经知道了前$i - 1$个元素,那么我们这时候选什么是确定的。

先确定出前$i - 1$个数,方案数为$A_{2^n - 1}^{i - 1}$,

考虑若此时选了一个空的集合,那我们要保证前$i - 1$个集合满足条件,方案数为$f[i - 1]$

若选了重复的集合(这是最难理清楚的),剩下的$i - 2$个元素很定要满足条件,方案数为$f[i - 2]$,然后我们枚举一个集合,方案数为$2^{n} - (i - 2)$,这样看似就可以了。但是我们在递推的时候是没有考虑顺序的,因此另一个元素有$i - 1$种取值,因此还要乘$i - 1$

得到递推式

f[i]=A_{2^n-1}^{i-1}-f[i-1]-(i-1)\times f[i-2]\times(2^n-1-(i-2))

// luogu-judger-enable-o2
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<stack>
#include<vector>
#include<cstring>
#define LL long long 
//#define int long long
using namespace std;
const int MAXN = 3 * 1e6;
const LL mod = 1e8 + 7;//fuck
inline int read() {
    char c = getchar(); int x = 0, f = 1;
    while(c < '0' || c > '9'){if(c == '-') f = -1; c = getchar();}
    while(c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
    return x * f;
}
int N, M;
LL ifac[MAXN], fac[MAXN], f[MAXN], A[MAXN];
LL fastpow(LL a, LL p) {
    LL base = 1;
    while(p) {
        if(p & 1) base = (base * a) % mod;
        a = (a * a) % mod; p >>= 1;
    }
    return base % mod;
}
main() {
    N = read(); M = read(); LL base = fastpow(2, N) % mod;
    fac[0] = A[0] = 1; for(int i = 1; i <= M; i++) fac[i] = 1ll * i * fac[i - 1] % mod;
    ifac[M] = fastpow(fac[M], mod - 2);
    for(int i = 1; i <= M; i++) A[i] = 1ll * A[i - 1] * (base - i + mod) % mod;
    f[0] = 1; f[1] = 0; 
    for(int i = 2; i <= M; i++) f[i] = ((A[i - 1] - f[i - 1] + mod) % mod - 1ll * f[i - 2] * (i - 1) % mod * (base - i + 1) % mod + mod) % mod;
    printf("%lld", f[M] * ifac[M] % mod);
    return 0;
}
/*
99999 99999
*/

 


作者:自为风月马前卒,发布于:2018/08/30
原文:https://www.cnblogs.com/zwfymqz/p/9540625.html